Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 18(5): e0284650, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37195912

RESUMEN

Situated in the southern end of the Annamite Mountain Range, Langbiang Plateau is a major biodiversity hotspot of southern Vietnam known for high species diversity and endemicity. To achieve effective conservation, parts of the plateau were designated as the Langbiang Biosphere Reserve, an UNESCO World Network aiming to improve relationships between inhabitants and their environments. Amongst the rich endemic flora of the plateau are three gesneriads ascribed to Primulina, a calciphilous genus with high species diversity in the vast limestone karsts stretching from southern China to northern Vietnam. However, a recent phylogenetic study questioned the generic placement of the Langbiang Primulina, corroborating with observations on the geographical distribution, habitat preference, and phyllotaxy of the three species. Based on phylogenetic analyses of nuclear ITS and plastid trnL-F DNA sequences of a comprehensive sampling covering nearly all genera of the Old World Gesneriaceae, we demonstrate that the three Langbiang Primulina species form a fully supported clade distantly related to other Primulina. As this clade is biogeographically, ecologically, morphologically, and phylogenetically distinct worthy of generic recognition, we propose to name it Langbiangia gen. nov. to highlight the rich and unique biodiversity of the Langbiang Plateau. By means of this taxonomic endeavor, we are hoping to raise the conservation awareness of this biodiversity heritage of southern Vietnam and promote the importance of Langbiang Biosphere Reserve that is crucial for achieving action-oriented global targets of the post-2020 global biodiversity framework (GBF) of the UN Convention on Biological Diversity (CBD)-effective conservation and management of at least 30% of biodiverse terrestrial, inland water, and costal and marine areas by 2030-that has been agreed at the COP15 in Montréal in December 2022.


Asunto(s)
Biodiversidad , Lamiales , Filogenia , Vietnam , Ecosistema
2.
Sci Rep ; 12(1): 15800, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-36138079

RESUMEN

Petrocodon and Primulina are two characteristic genera of Gesneriaceae that exhibit remarkable species and floral diversity, and high endemism across the Sino-Vietnamese Limestone Karsts. To better understand the evolution of limestone gesneriad plastomes, we report nine complete plastomes of seven Primulina and two Petrocodon which have never been assembled before. The newly generated plastomes range from 152,323 to 153,786 bp in size and display a typical quadripartite structure. To further explore the plastome evolution across Gesneriaceae, we assembled five additional plastomes from public reads data and incorporated 38 complete Gesneriaceae plastomes available online into comparative and phylogenomic analyses. The comparison of 52 Gesneriaceae plastomes reveals that not only Primulina and Petrocodon but all gesneriad genera analyzed are highly conserved in genome size, genome structure, gene contents, IR boundary configurations, and codon usage bias. Additionally, sliding window analyses were implemented across alignments of Primulina and Petrocodon for identifying highly variable regions, providing informative markers for future studies. Meanwhile, the SSRs and long repeats of Gesneriaceae plastomes were characterized, serving as useful data in studying population and repetitive sequence evolutions. The results of plastome phylogenetics represent a preliminary but highly resolved maternal backbone genealogy of Primulina and the Old World subtribes of Gesneriaceae.


Asunto(s)
Evolución Molecular , Lamiales , Carbonato de Calcio , Lamiales/genética , Filogenia , Plastidios/genética
3.
PLoS One ; 17(9): e0272680, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36178903

RESUMEN

'Breadfruit' is a common tree species in Taiwan. In the indigenous Austronesian Amis culture of eastern Taiwan, 'breadfruit' is known as Pacilo, and its fruits are consumed as food. On Lanyu (Botel Tobago) where the indigenous Yami people live, 'breadfruit' is called Cipoho and used for constructing houses and plank-boats. Elsewhere in Taiwan, 'breadfruit' is also a common ornamental tree. As an essential component of traditional Yami culture, Cipoho has long been assumed to have been transported from the Batanes Island of the Philippines to Lanyu. As such, it represents a commensal species that potentially can be used to test the hypothesis of the northward Austronesian migration 'into' Taiwan. However, recent phylogenomic studies using target enrichment show that Taiwanese 'breadfruit' might not be the same as the Pacific breadfruit (Artocarpus altilis), which was domesticated in Oceania and widely cultivated throughout the tropics. To resolve persistent misidentification of this culturally and economically important tree species of Taiwan, we sampled 36 trees of Taiwanese Artocarpus and used the Moraceae probe set to enrich 529 nuclear genes. Along with 28 archived Artocarpus sequence datasets (representing a dozen taxa from all subgenera), phylogenomic analyses showed that all Taiwanese 'breadfruit' samples, together with a cultivated ornamental tree from Hawaii, form a fully supported clade within the A. treculianus complex, which is composed only of endemic Philippine species. Morphologically, the Taiwanese 'breadfruit' matches the characters of A. treculianus. Within the Taiwanese samples of A. treculianus, Amis samples form a fully supported clade derived from within the paraphyletic grade composed of Yami samples, suggesting a Lanyu origin. Results of our target enrichment phylogenomics are consistent with the scenario that Cipoho was transported northward from the Philippines to Lanyu by Yami ancestors, though the possibility that A. treculianus is native to Lanyu cannot be ruled out completely.


Asunto(s)
Artocarpus , Artocarpus/genética , Humanos , Filipinas , Filogenia , Almidón , Taiwán
4.
Genome Res ; 32(5): 864-877, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35361625

RESUMEN

The ecology and genetic diversity of the model yeast Saccharomyces cerevisiae before human domestication remain poorly understood. Taiwan is regarded as part of this yeast's geographic birthplace, where the most divergent natural lineage was discovered. Here, we extensively sampled the broadleaf forests across this continental island to probe the ancestral species' diversity. We found that S. cerevisiae is distributed ubiquitously at low abundance in the forests. Whole-genome sequencing of 121 isolates revealed nine distinct lineages that diverged from Asian lineages during the Pleistocene, when a transient continental shelf land bridge connected Taiwan to other major landmasses. Three lineages are endemic to Taiwan and six are widespread in Asia, making this region a focal biodiversity hotspot. Both ancient and recent admixture events were detected between the natural lineages, and a genetic ancestry component associated with isolates from fruits was detected in most admixed isolates. Collectively, Taiwanese isolates harbor genetic diversity comparable to that of the whole Asia continent, and different lineages have coexisted at a fine spatial scale even on the same tree. Patterns of variations within each lineage revealed that S. cerevisiae is highly clonal and predominantly reproduces asexually in nature. We identified different selection patterns shaping the coding sequences of natural lineages and found fewer gene family expansion and contractions that contrast with domesticated lineages. This study establishes that S. cerevisiae has rich natural diversity sheltered from human influences, making it a powerful model system in microbial ecology.


Asunto(s)
Biodiversidad , Saccharomyces cerevisiae , Asia , Humanos , Filogenia , Saccharomyces cerevisiae/genética , Taiwán , Secuenciación Completa del Genoma
6.
J Plant Res ; 135(2): 203-220, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35080694

RESUMEN

Species of Broussonetia have been essential in the development of papermaking technology. In Japan and Korea, a hybrid between B. monoica and B. papyrifera (= B. × kazinoki) known as kozo and daknamu is still the major source of raw materials for making traditional paper washi and hanji, respectively. Despite their cultural and practical significance, however, the origin and taxonomy of kozo and daknamu remain controversial. Additionally, the long-held generic concept of Broussonetia s.l., which included Sect. Allaeanthus and Sect. Broussonetia, was challenged as phylogenetic analyses showed Malaisia is sister to the latter section. To re-examine the taxonomic proposition that recognizes Allaeanthus, Broussonetia, and Malaisia (i.e., Broussonetia alliance), plastome and nuclear ribosomal DNA (nrDNA) sequences of six species of the alliance were assembled. Characterized by the canonical quadripartite structure, genome alignments and contents of the six plastomes (160,121-162,594 bp) are highly conserved, except for the pseudogenization and/or loss of the rpl22 gene. Relationships of the Broussonetia alliance are identical between plastome and nrDNA trees, supporting the maintenance of Malaisia and the resurrection of Allaeanthus. The phylogenomic relationships also indicate that the monoecy in B. monoica is a derived state, possibly resulting from hybridization between the dioecious B. kaempferi (♀) and B. papyrifera (♂). Based on the hypervariable ndhF-rpl32 intergenic spacer selected by sliding window analysis, phylogeographic analysis indicates that B. monoica is the sole maternal parent of B. × kazinoki and that daknamu carries multiple haplotypes, while only one haplotype was detected in kozo. Because hybridizations between B. monoica and B. papyrifera are unidirectional and have occurred rarely in nature, our data suggest that daknamu might have originated via deliberate hybrid breeding selected for making hanji in Korea. On the contrary, kozo appears to have a single origin and the possibility of a Korean origin cannot be ruled out.


Asunto(s)
Broussonetia , Moraceae , Broussonetia/química , Broussonetia/genética , Filogenia , Filogeografía , Fitomejoramiento
7.
Front Plant Sci ; 12: 720171, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35069611

RESUMEN

The early-diverging eudicot family Berberidaceae is composed of a morphologically diverse assemblage of disjunctly distributed genera long praised for their great horticultural and medicinal values. However, despite century-long studies, generic delimitation of Berberidaceae remains controversial and its tribal classification has never been formally proposed under a rigorous phylogenetic context. Currently, the number of accepted genera in Berberidaceae ranges consecutively from 13 to 19, depending on whether to define Berberis, Jeffersonia, and Podophyllum broadly, or to segregate these three genera further and recognize Alloberberis, Mahonia, and Moranothamnus, Plagiorhegma, and Dysosma, Diphylleia, and Sinopodophyllum, respectively. To resolve Berberidaceae's taxonomic disputes, we newly assembled 23 plastomes and, together with 85 plastomes from the GenBank, completed the generic sampling of the family. With 4 problematic and 14 redundant plastome sequences excluded, robust phylogenomic relationships were reconstructed based on 93 plastomes representing all 19 genera of Berberidaceae and three outgroups. Maximum likelihood phylogenomic relationships corroborated with divergence time estimation support the recognition of three subfamilies Berberidoideae, Nandinoideae, and Podophylloideae, with tribes Berberideae and Ranzanieae, Leonticeae and Nandineae, and Podophylleae, Achlydeae, Bongardieae tr. nov., Epimedieae, and Jeffersonieae tr. nov. in the former three subfamilies, respectively. By applying specifically stated criteria, our phylogenomic data also support the classification of 19 genera, recognizing Alloberberis, Mahonia, and Moranothamnus, Plagiorhegma, and Diphylleia, Dysosma, and Sinopodophyllum that are morphologically and evolutionarily distinct from Berberis, Jeffersonia, and Podophyllum, respectively. Comparison of plastome structures across Berberidaceae confirms inverted repeat expansion in the tribe Berberideae and reveals substantial length variation in accD gene caused by repeated sequences in Berberidoideae. Comparison of plastome tree with previous studies and nuclear ribosomal DNA (nrDNA) phylogeny also reveals considerable conflicts at different phylogenetic levels, suggesting that incomplete lineage sorting and/or hybridization had occurred throughout the evolutionary history of Berberidaceae and that Alloberberis and Moranothamnus could have resulted from reciprocal hybridization between Berberis and Mahonia in ancient times prior to the radiations of the latter two genera.

8.
PLoS One ; 10(9): e0138471, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26384242

RESUMEN

The emergence of carbapenemase-producing Klebsiella pneumoniae (CPKP) has become a great concern worldwide. In this study, 994 non-duplicate, carbapenem non-susceptible Klebsiella pneumonia isolates were collected in Taiwan from 2011 to 2013 for detection of the carbapenemase genes, assessment of antimicrobial susceptibility and molecular epidemiology studies. Of these 994 isolates, 183 (18.4%) had carbapenemase genes: 157 (15.8%) KPC (145 KPC-2 and 12 KPC-17), 16 (1.6%) IMP-8, 9 (0.9%) VIM-1, and 1 (0.1%) NDM-1. KPC had the highest prevalence rate among the carbapenemases and represented a major epidemic clone circulating in Taiwan. The ST512 and ST258 KPC-2 KPs were first identified in Taiwan and were grouped into a small cluster in the PFGE profile. In addition, the genetic structure encompassing the blaKPC gene of the ST512 and ST258 isolates showed a different pattern from that of other KPC isolates. ST11 may be a major sequence type circulating in Taiwan, although a specific minor clone has begun to be observed. This is the first report of ST258 and ST512 KPC-2 KP isolates in Taiwan, whether ST258 and ST512 will become the next endemic problems in Taiwan should be closely monitored.


Asunto(s)
Proteínas Bacterianas/genética , Infecciones por Klebsiella/epidemiología , Klebsiella pneumoniae/genética , beta-Lactamasas/genética , Antibacterianos/farmacología , Carbapenémicos/farmacología , ADN Bacteriano/genética , Humanos , Infecciones por Klebsiella/tratamiento farmacológico , Klebsiella pneumoniae/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Epidemiología Molecular/métodos , Taiwán
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...